
Distributed Anonymous Computation of
Social Distance

Edoardo Biagioni, esb@hawaii.edu
Department of Information and Computer Sciences, University of Hawaii at Mānoa, Honolulu, Hawaii, USA

Abstract—In a distributed social network, no single system
holds information about all the individuals in the network, and
no single system is trusted by all the individuals in the network.
It is nonetheless desirable to reliably compute the social distance
among individuals. This must be done anonymously, without
giving away any identifying information about individuals in the
social network, and reliably, without allowing anyone to pretend
to be socially closer to someone else than they actually are.

The Social Network Connectivity Algorithm, or SoNCA, ac-
complishes these goals in a distributed manner. This paper
describes both the high-level algorithm and a concrete design
that is intended for future use with a network, AllNet, designed
to provide secure interpersonal communication utilizing all avail-
able means, including Internet, cellular communications, ad-hoc
networking and delay-tolerant networking.

Index Terms—social distance; social network; ad-hoc network;
peer-to-peer network; p2p; allnet

I. INTRODUCTION

It has been suggested since the 1920s [1] and known since
the work of Milgram ([2], summarized by Kleinberg [3]) in
the 1960s that modern human societies are closely connected,
leading to the proverbial ”six degrees of separation”. More
rigorous work has found even closer connections in the age
of social networks [4].

If the world population is at most six degrees of separation,
and each individual has a description of their own social
network up to three degrees of separation (friend of friend
of friend, or f3), individuals comparing such social networks
are likely to find at least one match. If, as more recent studies
show, the average degree of separation is closer to four, then
comparing just two degrees of separation might often lead
to finding a friend of friend (f2) in common. Either way,
recording about a million people on each device makes it very
likely that any two devices will have in common information
about at least one person.

The AllNet project [5][6] has the goal of persuading peo-
ple to help others communicate. Devices that participate in
AllNet may forward messages to and from other devices.
Such forwarding consumes resources, particularly storage,
battery, and bandwidth. For me to persuade you to carry my
messages, it would be helpful if I could convince you that
we have common friends or friends-of-friends (other ways of
persuading people are described in an earlier article [7]). The
AllNet Social Network Connectivity Algorithm, or SoNCA,
is designed to make such exchanges automatic and efficient.
Although designed in the context of AllNet, the algorithm has
wider applicability to any distributed social network where

it might be beneficial to establish social distance or similar
metrics.

This paper first presents (Section II) an overview of AllNet,
the security model used in this paper, and the privacy this
design is intended to maintain. The main section (Section III)
explains how SoNCA maintains the desired privacy while
providing the desired information about degrees of separation.
The analysis section (Section IV) considers the efficiency and
security of SoNCA.

II. BACKGROUND

A. AllNet Design

The early Internet was optimized for a few driving appli-
cations, most notably telnet, ftp, and email. For AllNet, driv-
ing applications include secure chat, telephony, and internet
access. The first two need not use any infrastructure if the
mobile devices are in range of each other or have sufficient
intermediate devices.

Just as the Internet carries IP traffic over many other
networks such as Ethernet and 802.11, AllNet is an overlay
network that can run on top of other networks. Unlike the
Internet, addresses in AllNet are optional. When no specific
route to a destination is known, AllNet uses broadcasts limited
to a specific number of hops. Packets sent with a lower number
of hops are given higher priority than similar packets sent
with a higher number of hops, incentivizing senders to use
the lowest number of hops that will accomplish their goals.

More details of message addressing and forwarding are
given in earlier papers [5][6].

B. Security Model

As in most research in network security, we assume the
end devices are secure. While this may not always be true, no
security protocol can provide security to an insecure device.

We assume an attacker can eavesdrop on messages, inject
new messages, or act as an attacker-in-the-middle.

We also assume that conventional public-key encryption and
authentication algorithms such as RSA [8] are secure, and
similarly for secret-key encryption such as AES [9] and secure
hashes such as SHA512 [10] used for authentication as part
of an HMAC.

All interpersonal messages in AllNet are encrypted and
authenticated using public-key systems. For larger volumes
of data, session keys are exchanged securely under the public-
key cryptosystem. Broadcast messages are not encrypted, but
may be authenticated.

TABLE I
SYMBOLS USED IN SECTION III

Symbol Meaning
f , f1 friends’ IDs
f i, i > 1 IDs of the friends of the f i−1 group
|f i| number of IDs in f i

k, k1 number of bits in an ID, typically 128
ki number of bits saved for IDs in f i, typ. ki−1 − 16
b number of bits in the Bloom filter
n number of IDs (1 bits) in the Bloom filter
h num. bits exchanged for each potentially matching hash

Making contact with a new person and exchanging keys in
AllNet is decentralized, and somewhat resembles the mecha-
nism in ssh. This is different from the certificate mechanism
used in SSL/TLS [11]. A certificate authority, may have little
knowledge of the websites it certifies, but its certificates are
widely accepted. In AllNet I certifies to myself only my own
personal contacts. While a compromise of a TLS certificate
authority might be used to impersonate many different web-
sites [12], a compromise of Alice’s keys might be used to
send messages in Alice’s name, but cannot be leveraged to
impersonate Alice’s friend Bob.

We assume that devices can generate random bitstrings,
and that a random bitstring, if long enough, is unique with
sufficiently high probability1.

C. Privacy and Social Networks

We wish to have two individuals exchange sufficient infor-
mation to establish their distance in the social network, without
requiring any mutual trust or exchanging any secrets. Each
individual begins the exchange with information about a small
part of the entire social network, about 1 million people. The
only information that each party can derive from the exchange
is the path through their portion of the social network through
which the other individual is reachable.

III. SOCIAL NETWORK CONNECTIVITY

The Social-Network Connectivity Algorithm (SoNCA) is
designed to be used as part of a negotiation where one party
(Alice) wishes to find out and have evidence of the shortest
social network path between herself and another individual
(myself).

Because no digital signatures are used in this process,
individuals are identified by unique, self-selected, fixed-length
(k-bit), persistent random bitstrings. Selecting k = 128 makes
the chance of collision vanishingly small.

A. AllNet Social Network Connectivity Algorithm (SoNCA)

My device stores |f | friends’ IDs. Each ID has k = k1 bits.
Each of my friends also gives me the first k2 < k bits of all of
their friends’ IDs, and k3 < k2 bits of the IDs of their friends’
friends. These IDs are collected directly from our immediate

1If two people ever choose the same ID, someone may be able to claim a
closer relationship than is actually the case, but nothing more.

contacts, and kept on our devices. If k = 128, we can use
k2 = 112 and k3 = 96.

If everyone has |f | = 100 random f riends and contacts,
|f2| ≈ 10,000, |f3| ≈ 1M, |f4| ≈ 100M, and so on.

The world is not random, so a reasonable goal is to limit
the number of IDs stored, for example to about 106 (1 million)
IDs. If the total number of IDs is 1010 (10 billion), the prob-
ability of one of my IDs matching one of someone else’s 106

IDs is 1/10,000 (106/1010), so my million IDs will average
100 matches. Therefore, for anyone on the planet, I will likely
be able to determine the distance of their relationship to me,
even though my device only stores a million IDs.

At 96 bits for most of the IDs (since most of the IDs are
in f3), SoNCA requires about 12MB of storage. Assuming
10, 000 people in f2, every pair of contacts exchanges about
140KB.

1) Proving Connectivity: Alice and I have never met. We
have no way to identify each other, but I would like to discover,
and prove to her, how far apart we are in the social network.
Because we have no way to identify each other, the exchange
takes place entirely in the clear. At the end of the exchange,
Alice and I have only learned how closely connected we are.

I do not wish to send in the clear either my own or anyone
else’s ID, since such information could be used to impersonate
me or my friends. However, if Alice sends me a nonce, I
concatenate the nonce to each of the IDs that I have, and send
Alice both the nonce and the hashes of the result. If Alice
performs the same operation, she can tell whether we have any
IDs in common. Assuming it is hard to reconstruct a bitstring
given its hash, Alice (and any attacker) cannot reconstruct my
IDs, but only confirm whether she has them already.

Computing and exchanging a million 512-bit hashes can
take significant time and energy. To optimize this, I begin the
exchange by sending Alice a Bloom filter reflecting the first
few bits of the IDs that I have. In practice, a 16-million-bit
Bloom filter can be built with the first 24 bits of the IDs (the
optimal size of the Bloom filter is analyzed in Section III-B).
Possession of these 24 bits is not particularly helpful to an
attacker trying to reconstruct 96-bit or longer IDs.

If any of the bits in the Bloom filters corresponds to any
of Alice’s IDs, Alice has tentatively2 identified one or more
IDs that might match one or more of my f i|i ≤ 3. She then
sends me the information about which bits in the bloom filter
matched, and I send her only the corresponding hashes. Alice
can then find the matching hashes in her f3, f2, or f1, and
compute my connectivity accordingly. By hashing a matching
ID with a different nonce, Alice can then prove the same
connectivity to me.

The exchange is repeated three times, beginning with a
bloom filter of the hashes in my f , then f2, then f3.

If I don’t want to reveal to Alice the exact size of my f i

set, I can exchange only a subset of my IDs, or create new
random IDs and temporarily treat them as if they were real
IDs, or both.

2While a Bloom filter has no false negatives, it can have false positives.

2) Nonce Selection: Because I know nothing about Alice
when she first contacts me, there is no way I can validate
anything about her. I may not even see her in person – she
might be within wireless range, but in a different room. All I
know is the information that Alice sends me about the contacts
we have in common.

This lack of knowledge allows an attacker-in-the-middle
between me and Alice to perform validation, pretending to
be Alice when communicating with me, and pretending to
be me when communicating with Alice. The only thing the
attacker cannot do is change the nonce. The nonce then has to
be selected to be valuable to the person requesting the service.
The nonce should then include the public key that Alice will
later use to communicate with me.

B. Minimizing the Size of the Exchange

The SoNCA exchange is designed primarily to be used
when devices are either directly in range of each other, or both
connected to the Internet. In these cases, the number of bits
exchanged is not likely to be critical. However, it is interesting
to consider how the SoNCA exchange can be optimized by
minimizing the number of bits sent and received.

When I first connect to Alice to initiate the SoNCA ex-
change, I must send her Bloom filters corresponding to my
friends’ IDs. For simplicity, this analysis only considers the set
f3, which in most cases will be much larger than the other sets,
and has size n = |f3|. The size of the Bloom filter for f3 is
b > n bits. Assuming that IDs are uniformly distributed, each
ID that Alice holds will match a bit in my Bloom filter with
probability n/b. If Alice has |f i| IDs at level i, the expected
number of matches between my Bloom filter and Alice’s IDs
at her level i is n× |f i|/b.

I wish to choose b to minimize the total number of bits
exchanged, while still identifying every matching ID.

The number of bits I send to Alice initially is the number
of bits b in the Bloom filter.

The information that Alice sends to me is the list of bits in
my Bloom filter that match her IDs. In response, I will send
Alice a hash for each match. If the total number of bits that
Alice and I exchange for each possible match is h (the value
for h is derived in the next two paragraphs), then the expected
number of bits that Alice and I exchange for all the matches
is h times the number of matches, or

h× n× |f i|/b (1)

To compute h, we note that the information that Alice sends
to me for each match is the list of bits in the Bloom filter that
match her IDs at level h. This can be encoded using log2n
bits for each match.

The hash that I send to Alice for each match can be a partial
hash, since there is no practical purpose in sending more hash
bits than the number of bits of the ID. If Alice stores ki bits of
the ID and I store kj bits of the ID, then I need to send Alice
min(ki, kj) bits for each hash. The value of h in Equation 1
is then h = log2n+min(ki, kj).

Including the original Bloom filter and the hashes, the
expected number of bits Alice and I exchange is:

ˆbits = b+ h× n× |f i|/b (2)

|f i| is unknown until the exchange is complete (we don’t
know which of Alice’s levels, if any, will contain the ID of
one of my friends), but if the number of stored IDs is limited
to one million, |f i| ≤ 1,000,000.

To find the optimal b to minimize the total number of bits
sent, we differentiate equation 2 with respect to b and set the
difference to 0.

d ˆbits

db
= 1− h× n× |f i|

b2
= 0

b2 = h× n× |f i|

b =
√
h× n× |f i| (3)

Using |f i| = 1,000,000 I choose the nearest b that is a
power of 2.

For example, if I have about 1,000,000 IDs in my f3

and k3 = 96 bits, h is k3 + log2 1, 000, 000 = 116, so
b =

√
116× 106 × 106 = 11 × 106 or 11 million bits. The

nearest power of two is 224 bits or 2,097,152 bytes.
The likelihood of any one of Alice’s 1,000,000 IDs match-

ing a bit in my Bloom filter is about 1/16, since 1/16 of
the bits in the Bloom filter are set. The expected number of
matches is then 62,500. For each of these matches I must send
a 96-bit (12-byte) hash, amounting to 750,000 bytes. The total
amount of data I send is then 2,847,142 bytes.

That this is optimal can be verified by looking at the next
lower power of two, using 223 bits in my Bloom filter, which
leads to an expected 125,000 matches and my sending Alice
2,861,076 bytes. The next higher power of two, 225, only
has an expected 31,250 matches whose hashes can be sent
with 453,125 bytes, but the Bloom filter has 4,194,304 bytes,
so the total data I send is 4,647,429 bytes. Both of these
are higher than the 2,847,142 bytes I must send when the
Bloom filter has 224 bits, so from this example we see that
b =

√
h× n× |f i| ≈ 224 is indeed optimal.

IV. SECURITY ANALYSIS OF SONCA

When using SoNCA to establish a connection with Alice,
I will send her some information about my social network.
However, I know nothing about Alice, and in fact, she might
be an attacker trying to obtain information from me. Since the
exchange is not encrypted, any eavesdropper or man-in-the-
middle attacker might also be able to get the same information.
It is therefore appropriate to clearly identify what information
is and is not sent.

No IDs are sent in SoNCA, only ID hashes.
As long as the hash functions are cryptographically secure,

an attacker cannot identify the IDs in my social network unless
the attacker has already obtained the same IDs.

The main concern is that an attacker who already has one
of the IDs in my f i will be able to tell that I have the same
ID. While this might pose some concerns, it is also the point
of SoNCA that someone I don’t know should be able to tell
what our degree of relationship is, and therefore that we have
received the same ID from a person to which we are more
or less closely connected. So it is necessary for Alice to be
able to identify the IDs I hold and that she also has, and an
attacker will be able to do the same.

There are ways to lessen the amount of information sent.
In variant A, I only send Alice the hash of my own public

ID, giving an attacker a chance to figure out who I might be,
but no information about my social network. Then, Alice will
only be able to see if I am in her f1 . . . f3.

Variant B assumes that the information about IDs in my
f3 (my friends of friends of friends) holds little interest to
an attacker, since I do not know these people myself. One of
these IDs is very likely to be found in Alice’s f1 . . . f3, and
Alice may find that we are connected within her f6.

Variant C combines variants A and B. First I send Alice the
hash of my own ID, which Alice can use to figure out if I am
in her f1 . . . f3. If I am not, I use variant B and Alice can see
I am in her f4 . . . f6.

V. RELATED WORK: PEER-TO-PEER SOCIAL NETWORKS

In recent years several proposals have been made for Peer-
to-Peer (P2P) social networks. These include PeerSoN [13],
Safebook [14], LibreSocial (libresocial.com) and Peer-
Book [15], though the last project no longer seems to be
maintained. The very first secure P2P network was Phil
Zimmerman’s PGP [16], which provides security encryption
for email messages. PGP introduced the idea of a web of trust
based on social relationships. The major disadvantage of PGP
is the practical difficulty of securely exchanging public keys,
a difficulty that AllNet has addressed.

PeerSoN and Safebook appear to be progressing as good
P2P social networks providing privacy and addressing many
of the issues needed to provide a secure P2P social network.
However, unlike AllNet, the focus of these project is on
providing a distributed social network rather than a networking
technology that will provide useful services whenever possible.

Freenet [17] is another network technology focused on
secure data exchange among peers. Freenet is really designed
for anonymity, and does not support the mutual exploration of
social networks.

Work in reputation-based systems (e.g., [18], [7]), to reward
socially constructive behavior and discourage socially damag-
ing behavior, is complementary to SoNCA.

Delay-Tolerant Networks (DTNs) rely on the movement of
devices, often carried by people. Some research has been done
on using social network information to optimize delivery of
messages [19].

VI. SUMMARY AND CONCLUSION

SoNCA allows two individuals, who do not trust each
other, to determine the set of shared IDs in their respective

social networks. Since randomly generated IDs are very likely
unique, this gives high confidence in the determination of the
shortest path connecting the two in the overall social network,
and may lead to higher trust between the two.

SoNCA is not yet implemented in AllNet. AllNet does have
the basics of peer-to-peer networking, including limited broad-
casting of messages, keeping track of peers, bootstrapping, and
prioritization and persistent storage of messages.

VII. ACKNOWLEDGEMENTS

Over the years many have expressed support and discussed
with me the ideas in AllNet. Particular contributions are from
Marifel Barbasa, Andreas Brauchli, Tiago Couto, Caterina
Desiato, Henry Eck, Amanda Ishikawa, and Wes Peterson, and
the taxpayers of Hawai‘i who have supported this work.

REFERENCES

[1] F. Karinthy, Láncszemek (Chains), 1929.
[2] J. Travers and S. Milgram, “An experimental study of the small world

problem,” Sociometry, vol. 32, 1969.
[3] J. Kleinberg, “Complex networks and decentralized search algorithms,”

in Proceedings of the International Congress of Mathematicians
(ICM), 2006.

[4] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna, “Four
degrees of separation,” arXiv:1111.4570v3, 2012.

[5] E. Biagioni, “A ubiquitous, infrastructure-free network for
interpersonal communication,” in The Fourth International Conference
on Ubiquitous and Future Networks, Phuket, Thailand, 2012.

[6] ——, “Ubiquitous interpersonal communication over ad-hoc networks
and the internet,” in 47th HICSS (Hawaii International Conference on
Systems Sciences), Waikoloa, Hawaii, Jan. 2014.

[7] C. Desiato and E. Biagioni, “Sharing networking resources to create a
pervasive infrastructure,” in Ninth International Conference on
Technology, Knowledge, and Society, Vancouver, Canada, 13-14
January 2013.

[8] R. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120–126, February 1978.

[9] NIST, “Announcing the advanced encryption standard (aes),”
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, US National
Institute of Standards and Technology, Tech. Rep. Federal Information
Processing Standards Publication 197, Nov. 2001.

[10] Information Technology Laboratory, “Secure hash standard (SHS),”
FIPS PUB 180-3, Gaithersburg, MD 20899-8900 USA, June 2007.

[11] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol
version 1.2,” RFC 5246, August 2008.

[12] “Hackers issue fake security certificates for CIA, Google,”
Electronista, Sep. 2011.

[13] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta, “PeerSoN: P2P
social networking - early experiences and insights,” in Proceedings of
the Second ACM Workshop on Social Network Systems 2009,
Nürnberg, Germany, March 31, 2009, pp. 46–52.

[14] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: a privacy
preserving online social network leveraging on real-life trust,” IEEE
Communications Magazine, vol. 47, no. 12, December 2009.

[15] B. Birt, “Peerbook,” June 29 2010. [Online]. Available:
http://blogs.cs.st-andrews.ac.uk/peerbook/

[16] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,
“OpenPGP message format,” RFC 4880, November 2007. [Online].
Available: http://tools.ietf.org/rfc/rfc4880.txt

[17] I. Clarke, “A distributed decentralized information storage and retrieval
system,” 1999. [Online]. Available:
http://freenetproject.org/papers/ddisrs.pdf

[18] S. Buchegger, “Coping with misbehavior in mobile ad-hoc networks,”
Ph.D. dissertation, EPFL, Lausanne, Switzerland, 2004.

[19] K. Chen and H. Shen, “Utilizing distributed social map for lightweight
routing in DTNs,” IEEE/ACM Transactions on Networking, no. 5,
October 2014.

