
Secure Anonymous Acknowledgments in a
Delay-Tolerant Network

Edoardo Biagioni
University of Hawai’i at Mānoa

esb@hawaii.edu

ABSTRACT

Abstract—Acknowledgments are used in TCP and
other protocols for reliable transmission of data. This
paper describes a special kind of acknowledgment
with additional features, including in particular a
guarantee that only the intended receiver can issue a
valid acknowledgment for a given message. Unlike
TCP, these acknowledgements work well even for
connectionless communications.

This acknowledgement mechanism assumes that
secure encryption is used to protect message data.
The sender of a data message includes a randomly-
generated acknowledgement in the encrypted part of
the message. As long as only the intended receiver
can decrypt the message, only the intended receiver
can issue the acknowledgement when it receives the
message. Such randomly-generated acknowledgments
in no way identify senders and receivers, providing
a degree of anonymity.

In a Delay-Tolerant Network all hosts participate
in forwarding data, taking on the role that routers
fill in a more conventional network. Hosts cache
messages for later delivery to other hosts that may
be connected only intermittently. To keep caches
manageable, messages must expire after a certain
time.

To further improve cache management, the cryp-
tographic hash of each message acknowledgement is
included as the message identifier in the unencrypted
part of the message. A forwarding host that receives
an acknowledgement can hash it and remove from its
cache any message matching this message identifier,
and decline to forward any future such messages.

I. INTRODUCTION

Few features of networking protocols are as
familiar to networking professionals as the ac-
knowledgement, commonly abbreviated ack. TCP
connections rely on acks to confirm receipt of
transmitted data and to grant permission to send

further data. This makes acks essential to the reli-
able transmission provided by TCP. Each TCP ack
carries a 32-bit ack number reflecting the sequence
number of the next byte of data expected on the
connection.

TCP acks are very predictable, which makes it
easy for an attacker to send spoofed acks [1].

The contribution of this paper is an ack mecha-
nism that provides:

• a guarantee of delivery, since valid acks can
only be issued by the intended receiver as
identified by that receiver’s access to a specific
secret key (Sections III and IV).

• a measure of anonymity, in that the ack mes-
sage in no way identifies either the sending or
the receiving device (Section III).

• the ability to reliably and securely delete acked
messages from message caches, even on hosts
that have no access to any secret key (Sec-
tion III).

• the ability for a receiver to communicate back
to the sender that partial receipt of a message
is sufficient (Section V).

II. BACKGROUND

A. Delay Tolerant Networks

Delay-Tolerant Network (DTN) technolo-
gies [2][3][4] support communication among
hosts that may only occasionally be connected to
each other. Such conditions are common among
mobile hosts that communicate through an ad-hoc
network.1 The purpose of DTNs is to deliver
data even in the absence of any simultaneous
end-to-end path between sender and receiver.

1In an ad-hoc network, every host may contribute to both
data forwarding and to creating and receiving data.



In the 1970s and 1980s email was often delivered
even to hosts that were never directly connected to
the Internet [5]. Such a host H would from time to
time dial up another host G (Gateway) with better
connectivity and which had agreed to cache email
to and from H. The connection used a protocol
called UUCP (unix-to-unix copy) [6] to download
emails addressed to the users of H, and to upload
emails originated by users of H.

To support this intermittent email delivery, G had
to save messages addressed to users of H and
deliver them on request, and buffer outgoing mes-
sages originating from H until G itself could in
turn connect to its upstream host or directly to
the wider Internet to deliver these messages. These
techniques allowed email to be delivered even if
neither sender nor receiver of the email were ever
directly connected to the Internet.

DTNs have similar goals as the old uucp email
system, but delivering general-purpose messages
rather than just email. Intermediate hosts in a
DTN cache messages and deliver them on request.
Sometimes the intermittent connection may be es-
tablished when one of the hosts moves into wireless
range of another host.

To accomplish this delivery, in a DTN all hosts
are peers, so all hosts must include all the function-
ality that in a more conventional network is divided
among data sources, data sinks, and routers.

When DTN nodes have access to the Internet,
messages can be delivered directly from the sender
to the receiver. The interesting case is therefore
when either the sender or the receiver, or both, are
offline and not communicating over the Internet.
Such disconnected hosts communicate directly with
each other over ad-hoc links, and send messages
to all peers. As connectivity changes to allow
communication with new nodes, peers can forward
their cached messages to any new peers, with the
goal of eventually delivering each message to its
final destination.

B. A Useful Delay Tolerant Network: AllNet

One application of DTNs is chat or text message
delivery among mobile devices with insufficient
data connectivity to the Internet. Mobile devices are
widespread even where connectivity is intermittent,
especially in rural areas or wherever a mobile de-

vice is outside the coverage of its wireless provider
for any reason, including wilderness adventure,
foreign travel, and in some emergency situations.

The AllNet project [7] is designed to create such
a DTN among mobile devices. AllNet is designed to
work whenever devices can communicate directly
among each other even in the absence of cellu-
lar service. Available technologies include point-
to-point (infrastructure-less) WiFi and the many
variants of Bluetooth, particularly Bluetooth Low
Energy (BLE). All of these are available on popular
mobile devices, though in each case the operating
system typically imposes idiosyncratic restrictions
on their usage.

AllNet has been designed to provide some degree
of security and anonymity of communications, in-
cluding features such as:

• connectionless communication which does not
need to identify sender and receiver.

• pervasive encryption of data messages.
• optional addresses that are unencrypted, and

only used to provide improved performance.
• support for ad-hoc communications over direct

(non-Internet) links between hosts.
• direct key exchanges between any two parties

in a communication, without involving third
parties.

• protection against DDoS amplification at-
tacks [8].

III. ACKNOWLEDGEMENTS IN AN AD-HOC

NETWORK

Since DTNs require all-to-all delivery when in
ad-hoc mode, conceptually each host in a DTN
has to cache all messages. While the storage re-
quirements for a chat application are moderate,
exchanging this data with every peer that one
encounters may require substantial spectrum and
too much energy from a limited battery. Instead,
AllNet acknowledges data messages that have been
received by the intended receiver by sending a
small ack message that confirms receipt. This is
conceptually similar to a TCP ack, but with the
following major differences:

• receipt of an ack confirms message delivery to
the application, not just the transport layer.

• only the intended receiver of the message can
issue the ack.



• acks are 16-byte random strings that are almost
certainly unique to each message.2

• nothing in the ack explicitly identifies either
the sender or the receiver, so these acks are
anonymous.

• several such acks from different conversations
can be combined into a single ack message.

When a sender receives an ack for a message
it has sent, both its cache and the application can
record that the message has been delivered to the
intended device.

Equally important, other hosts in the DTN can
record that the message has been delivered and
evict it from their caches, since any further delivery
would not serve any useful purpose.

Ack messages are forwarded in the same way
as other message, with each ack message possibly
multiple individual acks. This means that ack deliv-
ery has the same issues as delivering messages in
the first place, but acks can be much smaller than
data messages, so the overhead of distributing them
is less.

Further, acks are ephemeral, which means that
they can be deleted without affecting data trans-
mission – failure to deliver or cache an ack may
result in duplicate message transmission, which is
a minor consequence compared to failure to deliver
a data message.

Acks in most systems are idempotent, meaning
that receiving the same ack once has the same effect
as receiving it multiple times. Therefore, in TCP as
in AllNet, duplicate transmission of acks has no
consequences beyond the cost of transmission.

IV. SECURE ACKNOWLEDGEMENTS

In a network using TCP it is easy for an attacker
to generate acks identical to those that would be
generated by an intended receiver. [1]. As a result
TCP is not secure, and any guarantee of delivery
must be provided by a higher layer such as TLS.

AllNet is designed to provide many of the fea-
tures of TCP and TLS for connectionless decen-
tralized ad-hoc networks. For example, instead of
the hierarchically issued certificates used in TLS,

2The chances of a collision among randomly generated 128-
bit strings is small as long as the number of such strings is
substantially less than 264 = 18, 446, 744, 073, 709, 551, 616.

AllNet certifies keys based on interpersonal inter-
actions among users. The security of these trans-
missions can only be guaranteed if the intended
receiver of a message is the only system able issue
the corresponding ack.

In AllNet, each receiver holds one or more
cryptographic private keys that it uses to decrypt
messages addressed to itself.

A sender generating a data message for a specific
receiver then includes the ack in the message before
encrypting it, so that the ack is included in the
encrypted part of the message.

The sender then adds to the unencrypted part
of the data message the cryptographic hash of the
ack.3 This hash is known as the message identifier
or message ID. The message ID, like the ack, is
very likely to be unique for each message.

Every host forwarding the message can see the
message ID, but is unable to generate a valid
ack. Generating a valid ack would require either
obtaining the receiver’s key or inverting the crypto-
graphic hash function. Inverting the hash function
is assumed to be difficult when using a strong
cryptographic hash function such as the SHA-512
hash [9] used by AllNet.

On the other hand every host receiving a new
acknowledgement can hash it and remove from its
cache any messages with a matching message ID.

A. Anonymity of Messages and Acknowledgements

AllNet has optional addressing. Each source and
destination address has a number of significant bits.
A sender desiring anonymity may send its message
with 0 bits of source and destination address, so
that no unencrypted addresses are visible in the
message. When addresses have 0 bits, they identify
every host on the network, and every host receiving
the message may then attempt to decrypt every
such packet. A successful decryption then means
the message is for this host. Because decryption
requires resource usage from all the hosts in the
network that match a given address pair, AllNet as-
signs lower priority to messages with fewer address
bits than to messages that have more bits specified
in the address.

3Normally such hashes produce more than 16 bytes of data,
so the sender only includes the first 16 bytes of the hash.



Just as messages can be anonymous, so acks in
AllNet are also anonymous in that the ack itself
carries no information about the sender and receiver
of the ack. In addition, since any host in the network
might have cached the corresponding message, to
the extent possible acks are distributed to every host
in the network. This universal distribution makes
acks more resistant to traffic analysis than if they
were only delivered to the original sender.

V. ACKNOWLEDGEMENTS FOR MESSAGES

LARGER THAN THE MAXIMUM TRANSMISSION

UNIT (MTU)

These secure acknowledgments provide interest-
ing options when a message exceeds a network’s
Maximum Transmission Unit (MTU) and has to be
sent as a number of smaller packets. Such large
messages occur when sending multimedia data such
as audio, images, and video.

In the Internet Protocol (IP) uses a mechanism
called fragmentation [10], and this paper uses the
same term. The receiver can reconstruct the larger
message once it has received all of the fragments.

Each fragment in AllNet carries two acks, one for
the message as a whole and the other for the specific
fragment. Correspondingly, the unencrypted part of
each fragment contains a message ID obtained from
hashing the message ack, and a fragment ID (which
AllNet calls a packet ID) obtained from hashing the
fragment ack.

A receiver receiving fragments of a larger mes-
sage may ack them individually. Once the receiver
has received all the fragments of a message, it then
issues the ack for the entire message. Each host
receiving a message ack can clear from its cache
every fragment of the larger message, even if it is
missing one or more individual fragment acks.

A. Acknowledging Partial Transmission

It is interesting to speculate on different ways
of using these message and fragment acks. In
particular, it may be that only part of a message
is needed to deliver the desired content.

For example, the text of many email messages
is sent in duplicate, once as plain text and once as
html. If this strategy were used by an AllNet client,
then a receiver that received enough fragments to

reconstruct one or the other alternative could im-
mediately issue the message ack without requiring
retransmission of the missing fragments.

Similar techniques could apply when sending
images or videos. Many devices have screens with
low resolution and do not benefit from displaying
high resolution images. Other devices have screens
with very high resolution, and their users would be
dissatisfied with low resolution images. A clever
use of this protocol might send the low resolution
image first. If the sender receives acks for all of the
fragments, but not for the message, it can then send
the high resolution image. Conversely, if it receives
a message ack without sending the high resolution
image, it need not send the high resolution image
at all.

A further intriguing idea is the use of forward
error correction, that is, the transmission of data
beyond the minimum required, to achieve reliable
transmission even in the face of loss of some of
the fragments, and with no need for retransmission.
Avoiding the need for retransmission can be partic-
ularly useful for delay-tolerant networks.

To explain, we refer to a particularly simple
scheme for forward error correction, in which each
fragment of data is transmitted three times. In
this triply-redundant scheme, the message ack and
message ID are the same for all the fragments. Each
of the three copies of each fragment of data carries
the same content but different fragment acks and
fragment IDs.

With this algorithm, at least one copy of the data
is likely to be delivered even in the face of loss of a
small number of the fragments. A receiver that can
reconstruct the original message can immediately
issue the message ack, even though some of the
fragments may never be delivered.

If synchronous communication is available, the
sender may receive the message ack for such a
triply-redundant transmission before sending three
copies of all the fragments. On the other hand in a
DTN, a receiver may over time receive a random
subset of the fragments, and can then deliver the
message to the application and issue the ack as soon
as it receives all the fragments needed to recon-
struct a complete message. This message ack lets
intermediate hosts remove from their caches even
fragments that the destination has never received.



VI. COMPARISON TO TCP
ACKNOWLEDGEMENTS

As described in Section III, AllNet secure acks
offer substantially more assurance of message de-
livery than TCP acks. Specifically, these secure acks
guarantee4 that the issuer of each ack is either the
sender of the data message, which generated the ack
in the first place, or a receiver that is in possession
of the key needed to decrypt the message. In con-
trast, TCP acks have no cryptographic or security
properties, and can easily be manipulated by an
attacker desiring to convince a sender that messages
(called segments in TCP) have been received even
when they have not.

Such assurance is particularly important in an
ad-hoc network. Unlike the infrastructure of the
Internet, there is little assurance that a node in an
ad-hoc network is benign.

This section offers further comparisons between
these two types of acks.

TCP acks are counters, referring to the sequence
number after the last byte that was received. Be-
cause of this, TCP acks can, and in fact do, ac-
knowledge not only the message whose receipt led
to the ack being issued, but also all the data that
preceded it. TCP ack numbers are 32 bits, so an
ack in the original TCP can acknowledge up to 232

different bytes. TCP using the Protection Against
Wrapped Sequences [12] (PAWS) mechanism can
theoretically acknowledge up to 264 different bytes
of data. Note that TCP acks count bytes whereas
AllNet secure acks identify packets, so for example
a 1,000-byte message requires only one secure ack
in AllNet but consumes 1,000 sequence and ack
numbers in TCP.

The AllNet secure acks are not counters, so
cannot be used as cumulative acks (where one ack
potentially acknowledges many, many data packets)
as in TCP, but on the other hand a single All-
Net message ack can acknowledge many different
fragments. There are 2128 possible different AllNet
message acks. Since these acks are randomly se-
lected, the birthday paradox tells us that the chances

4With the usual caveat about guarantees only holding as long
as the cryptographic algorithms and the keys and devices are
secure.

of collision increase substantially once the number
of acks begins to approach 264.

In addition, these secure acks might collide with
acks from any sender, whereas the TCP connection
mechanism limits sequence and ack number colli-
sions to be within a connection.

A. Performance Analysis

Optimistically assuming a 64-bit sequence num-
ber space for TCP and with reasonable assumptions
against delivery of old packets, TCP is guaranteed
not to have sequence or ack collisions as long as
263 or fewer bytes are transmitted on a connection
within a two-minute Maximum Segment Lifetime
(MSL) period, leading to a maximum bandwidth of
over 7 × 1016 bytes/second for each TCP connec-
tion.

For the secure acks described in this paper,
to stay well away from the birthday paradox we
assume that it would be undesirable to have more
that about 260 messages alive in the network at any
given time. We further assume message sizes of
1,000 bytes and a maximum message lifetime (as
specified by the message expiration option in All-
Net) of about a week. Satisfying these assumptions
limits the entire network to about 1015 bytes per
second.

On the other hand, for use over the Internet, if we
assume a maximum message lifetime of 2 minutes,
similar to the MSL of TCP, the network can support
almost 1019 bytes per second.

While this throughput for the entire network can-
not be directly compared to the TCP per-connection
throughput, it is clearly adequate for both the
current, largely experimental AllNet, and for any
foreseeable developments.

Ad-hoc networks are typically small and rela-
tively inefficient [11], and so even in the imaginable
future are unlikely to scale to large sizes and large
amounts of traffic. Therefore for the ad-hoc side of
the AllNet communications, even the lower network
throughput derived by assuming a 1-week message
lifetime is very abundant.

VII. FUTURE WORK AND CONCLUSIONS

It is clear from the above analysis that if AllNet
ever becomes as popular as TCP, it will have to
be redesigned or extended for higher performance,



just as TCP has been and likely will be again in
the future.

The secure acks described in this paper provide
many advantages over conventional acks such as
used in TCP. This paper has explored a few, includ-
ing the guarantee that the ack can only be issued by
a receiver that has the correct cryptographic key, the
ability to use the combination of message ack and
fragment ack to let the sender know how much of
the data the receiver actually needs, and the use of
the acks to securely enable removing acknowledged
messages from peer caches.

Secure acks as described above only work when
sent encrypted. This is not a substantial limitation,
since even if the data is sent in the clear, the ack
itself may be encrypted. The need for encryption
means these secure acks rely on a key infrastructure
to identify legitimate receivers entitled to issue each
ack.

When encryption is not an option, one could
instead imagine having identical ack generators
based on identical keys on each pair of sender
and receiver, such that the receiver can generate
the same sequence of acks as the sender. In such
a case, the acks do not need to be transmitted at
all. Instead, the sender would include an identifier
for the ack associated with a message, and the
receiver can independently generate the ack and
hash it to compare them any received message IDs.
The receiver can then issue a valid ack that can be
verified by any peer that is caching messages.

Alternatively, in a scheme somewhat resembling
the Bitcoin blockchain [13], and if anonymity is
not a concern, a receiver could digitally sign a
received message ID with a widely known public
key. This scheme requires an infrastructure (perhaps
a blockchain?) to record and distribute the public
keys, but does not require any encryption. Since a
shared blockchain requires a persistent connection
to the Internet, this scheme may be not be as
suitable for ad-hoc communications as for systems
that do not rely on delay-tolerant ad-hoc commu-
nications.

In summary, this paper has explored some of
the design space for secure and anonymous ac-
knowledgments. While this section has indulged
in speculation, the mechanisms in Sections III and
IV, and in the initial part of Section V, are fully
implemented and live on the AllNet network.

REFERENCES

[1] Hastings and McLean, “TCP/IP spoofing fundamentals”,
1996 International Phoenix Conference on Computers
and Communications, doi: 10.1109/PCCC.1996.493637.

[2] Kevin Fall, “A Delay-Tolerant Network Architecture for
Challenged Internets”, SigCOMM, Aug 2003.

[3] Benhamida, Bouabdellah, and Challal, “Using delay
tolerant network for the Internet of Things:
Opportunities and challenges”, 2017 8th International
Conference on Information and Communication Systems
(ICICS), 2017, doi: 10.1109/IACS.2017.7921980.

[4] Mallorqui, Zaballos, and Serra, “A Delay Tolerant
Network for Antarctica”, IEEE Communications
Magazine, August 2022, doi:
10.1109/MCOM.007.2200147.

[5] Partridge, “The Technical Development of Internet
Email”, IEEE Annals of the History of Computing, vol.
30, no. 2, April-June 2008, doi:
10.1109/MAHC.2008.32.

[6] Nowitz, “Uucp Implementation Description”, Unix
Manual Version 7.
https://web.archive.org/web/

20180221100921/http://a.papnet.eu/
UNIX/v7/files//doc/36_uucpimp.pdf

[7] Biagioni, “Ubiquitous Interpersonal Communication
over Ad-Hoc Networks and the Internet”, 47th Hawaii
International Conference on Systems Sciences), in
January 2014, and other papers at
https://alnt.org/

[8] Biagioni, “Preventing UDP Flooding Amplification
Attacks with Weak Authentication”, International
Conference on Computing, Networking and
Communications (ICNC 2019), February 2019,
Honolulu, Hawaii.

[9] “Specifications for the Secure Hash Standard”, U.S.
Federal Information Processing Standards Publication
180-3, October 2008.

[10] Information Sciences Institute, “Internet Protocol”, RFC
791 (section 3.2.1.4), September 1981.

[11] Gupta and Kumar, “The Capacity of Wireless
Networks”, IEEE Transactions on Information Theory,
vol. 46, March 2000.

[12] Borman, Braden, Jacobson, and Scheffenegger, “TCP
Extensions for High Performance”, RFC 7323,
September 2014.

[13] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic
Cash System”, made public May 24 2009.
http://bitcoin.org/bitcoin.pdf


