
AllNet: using Social Connections to Inform
Traffic Prioritization and Resource Allocation

Edoardo Biagioni
Department of Information and Computer Sciences

University of Hawaii at Mānoa
Honolulu, Hawaii, USA

esb@hawaii.edu

Abstract—AllNet is a new networking protocol designed to
provide communication utilizing all available means, including
Internet and cellular communications, but when these are not
available, also ad-hoc networking and delay-tolerant networking.

These latter mechanisms are best for low-bandwidth commu-
nications. Effective support of low-bandwidth networking needs
message prioritization, which can benefit by knowing whether
messages are being sent on behalf of someone to whom the owner
of the mobile device is socially connected. By keeping track of the
social network of each of the friends of the owner of the mobile
device, the device can devote its resources to supporting better
quality communication among people its owner cares about,
and fewer resources to communication among people its owner
doesn’t know.

AllNet generalizes this notion by anonymously keeping track
of friends, friends of friends, friends of friends of friends, and
so on. Doing this while using only limited communication and
storage is the challenge addressed by the AllNet social network
connectivity algorithm described and evaluated in this paper.

Keywords-social network; ad-hoc network; peer-to-peer net-
work; p2p; backup communications; emergency communica-
tions;

I. INTRODUCTION

AllNet is a peer-to-peer communication technology de-
signed to provide connectivity among mobile and fixed de-
vices whenever possible, even in the absence of networking
infrastructure.

AllNet was born of the observation that every mobile device
has a two-way radio that is capable of communicating directly
with other mobile devices. Amazingly, at present this hardware
capability is only infrequently utilized by available software
and protocols. AllNet is designed to use this capability to
provide pervasive communication whenever possible.

Applications that are easy to envision include using mobile
devices as two-way multimedia radios (video walkie-talkies),
sharing internet connections (which is beginning to be sup-
ported by “personal hotspots”), and emergency communica-
tions.

The design of AllNet includes several components. The
Internet and other infrastructure-based forms of communi-
cation are used when available. When not available, ad-hoc
networking allows AllNet communications to reach beyond
the immediate radio range of the mobile device. As the data
is being forwarded over intermediate devices, ubiquitous en-
cryption protects the data from eavesdropping. Built-in priori-

tization allows each device participating in a communication to
establish its own level of support, creating a community where
messages that can be seen to require the fewest resources
are most likely to be forwarded. To maximize the chance
of intermediate systems being willing to forward messages,
applications can be designed to send the least possible number
of messages that are as small as possible.

On the other hand, whenever two systems are within range
of each other, or when the communication has been requested
by the owners of the devices involved, AllNet supports high
bandwidth communication as might be used for a multimedia
walkie-talkie.

When the Internet or other infrastructure is available, AllNet
traffic can be carried over the infrastructure network. When-
ever such infrastructure is not available or not accessible to
the particular mobile device (for example, due to lack of a
valid SIM card), AllNet provides a backup low-bandwidth
means of communication. Because of this, AllNet can be
useful in emergency situations and whenever mobile devices
might otherwise be offline. To appreciate the benefits of low-
bandwidth communication, it is sufficient to realize the impact
of services such as SMS and Twitter, famously limited to 140
characters per message, yet extremely useful in many different
situations.

To provide interpersonal communication while using as few
resources as possible, each device forwarding AllNet traffic
prioritizes all messages. The goal of the design of AllNet is
to support at least low-bandwidth communication sufficient for
the exchange of short text messages among individuals. This
paper, after presenting the overall design of AllNet in Sec-
tion II, explains in Sections III-IV how this prioritization can
be useful in favoring individuals to whom one is most closely
connected while giving lower quality service to individuals
that are not closely related. By anonymously keeping track
of who is related to whom, it is easy to see that ultimately
everyone is connected to everyone else, and that supporting
communication among strangers is a good way to build a
community where everyone supports communication among
other individuals.

AllNet uses public key encryption. The secure exchange
of public keys in AllNet is described in Section II-B. Once
two devices have each other’s public key, they can securely
exchange additional information, and in particular, information

about their own friends’ or contacts’ network. In this way, each
mobile device can accumulate information about the entire
social network. This information allows mutual strangers to
infer the distance of their relationship without identifying the
individuals through which they are connected.

Information about the social network allows individuals to
directly evaluate the benefits of supporting AllNet both to
themselves, and to their social group. One goal of AllNet is
to have individuals selfishly devote most of their resources to
supporting communication that directly benefits the individual,
but reserve a small fraction of their resources to generously
supporting communication whose benefits to the individual are
less immediate. In this way, AllNet provides information to
help build a community to support pervasive and ubiquitous
communication.

This paper includes in Sections III and IV an evaluation of
the effectiveness of the AllNet social network prioritization.
Specifically, by storing about a million keys, any device can
establish its owner’s relationship distance to just about anyone
on the planet by exchanging about 2 MB. Random populations
as described in Section IV show that a million individuals,
each with 100 contacts, of which 10 are random and the other
90 are randomly selected from friends of friends, have an
average distance between any two random individuals of less
than 3.5, and over 100 samples, a worst-case average distance
of about 3.8 between any two random individuals. As amply
made clear by other research (e.g. [1]), this confirms that in
general, individuals in a social network are likely to have fairly
close connections to each other.

II. ALLNET DESIGN

AllNet is a networking technology which, like the early
Internet, includes a few driving application. For the early
Internet, the driving applications were telnet, ftp, and email.
For AllNet, they are secure chat, internet access, and local
multimedia walkie-talkie.

Unlike the early Internet, the design of AllNet assumes
that many applications communicate by exchanging individual
messages more than by sending ordered streams of bytes.
Because a substantial fraction of messages might be lost,
AllNet applications should be designed to be stateless and to
exchange idempotent messages1 whenever possible. Ideally,
each message would be useful in isolation. For example in a
chat application user messages can be delivered to the user as
soon as they are received. If some prior messages have not
been received (so far), the application can give the user an
indication of this, while displaying whatever messages have
been received.

When exchanges are brief, the overhead of a TCP three-
way handshake can be large if the delay is substantial, as it
can be in ad-hoc networks. The establishment of quick TCP

1A message is idempotent if it has the same meaning no matter where in the
sequence of messages it is received. An application is stateless if its behavior
does not depend on the sequence with which messages have been received.
An early stateless protocol using idempotent messages is the Network File
System, NFS [2].

sessions is out of the question in Delay Tolerant Networking
(DTN), where data is physically carried to the destination by
the movement of the mobile device.2 It is for these reasons
that AllNet applications generally use connectionless message
transfer rather than connection-oriented byte streams.

Per-connection congestion control is an important function
of TCP connections. Instead of TCP-style congestion control,
AllNet performs data throttling and prioritizes individual mes-
sages based on their size, the distance they may still travel,
and the source and destination addresses.

The transfer of data can occur over a variety of media,
again as in the Internet. AllNet can use addresses from other
protocols, including specifically IPv4 and IPv6 addresses, and
also its own addresses. When no specific route to a destination
is known, AllNet can use broadcasts limited to a specific
number of hops. All else being equal, nodes forwarding a
message will prioritize broadcast messages with a smaller
number of hops over messages specifying a larger number
of hops.

More details of message addressing and forwarding are
given in a prior paper [3].

A. Security and Pseudonymous Authentication

One of the concerns when sending sensitive data over a
wireless ad-hoc network is the easy access to the data by other
devices controlled by attackers who might want to eavesdrop
on a conversation or inject malicious messages.

To prevent these attacks, AllNet signs and encrypts all
personal messages using public key encryption.3 In public-key
encryption, the public key kpub used to encrypt messages and
to verify signatures is different from the private or secret key
ksec used to decrypt messages and to create signatures. The
public key can be known to adversaries without compromising
the security of the cypher. The only known way of attacking
a secure Public Key Cryptosystem (PKS) is for the attacker to
convince one of the parties to use a public key for which
the attacker knows the corresponding secret key. It is for
this reason that secure HTTP requires certificates signed by
a trusted Certificate Authority. These certificates confirm that
the public key provided by a secure web site indeed belongs
to that web site.

In a decentralized, peer-to-peer network such as AllNet,
every user should certify his or her personal friends and other
contacts rather than rely on centralized certificate authorities.
This is a social model of identity, which does not offer the
same guarantees as provided by Certificate Authorities, but is
sufficient for many purposes.

Since friends and contacts often meet in person or have
other reasonably secure ways of exchanging private informa-
tion, AllNet leverages this out-of-band information exchange
to securely exchange public keys. The algorithm for secure
key exchange is described in detail in Section II-B.

2In this case the mobile device is known as a data mule.
3The current implementation of AllNet uses RSA public key encryption.

Other public key encryption algorithms can be used without changing the
AllNet protocol.

TABLE I
SYMBOLS USED IN SECTION II-B, SECURE KEY EXCHANGE

Symbol Meaning
s secret string, known only to Alice and Bob
kA Alice’s public key
kB Bob’s public key
N nonce
HA hash of (s, kA, N)

While in general trust may or may not be transitive depend-
ing on the context [4] [5], if two people wish to communicate
with each other and do not have any other way of securely
exchanging information, a trusted third party can help with the
initial key exchange.

The keys used for communication between Alice and Bob
need not be the same as the keys used for communication
between Bob and Charlie, or between Alice and Charlie. The
current design of AllNet uses a separate pair of public and
private keys for every pair of users. Using 4,096-bit (512-
byte) keys, if a user keeps keys for 10,000 contacts, the storage
required for the keys is on the order of 10MB or less, which
is very little on current mobile devices. And probably most
devices will keep far fewer than 10,000 keys.

B. Secure Key Exchange in AllNet

Secure exchange of public keys over an insecure medium is
relatively straightforward if the two parties share an unguess-
able secret. Techniques used for connecting Bluetooth devices
to cellphones and mobile devices to secure wireless access
points are not dramatically different from the algorithm de-
scribed in this section.

Alice and Bob share the same unguessable string s. Alice
wishes to send her public key kA to Bob, who wishes to send
his public key kB to Alice. Since public keys can only be
used to verify signatures and encrypt messages, knowledge of
a public key does not allow an attacker to read any confidential
information, and the exchange proceeds in the clear.

The algorithm used by AllNet is based on zero-knowledge
cryptographic proofs used to exchange keys, but is consider-
ably simpler than most schemes [6] [7]. This is because it only
needs to securely exchange public keys, and the public keys
themselves do not need to be kept secret.

Alice computes a hash HA = hash(s, kA, N), where N is
a nonce. She then sends to Bob (HA, kA, N). Any attacker
that does not have access to s is unable to generate a message
where H corresponds to kA and N . Bob can then compute
his own hash HB = hash(s, kB , N), and sends to Alice
(HB , kB , N).4

Without knowing the string s, Charlie cannot create a
message (HC , kC , N) such that Alice will be fooled into
believing that kC is Bob’s public key, because she can compute
the hash H ′C = hash(s, kC , N) and note that H ′C 6= HC .

4The nonces sent by Alice and by Bob may be the same or may be different.
The main purpose of the nonce is to ensure that, in the event the same key is
sent with the same secret at different times, it will produce a different hash.

To do a brute-force attack, Charlie must guess the string s
and send Alice a message for each guess of s. If, on average,
ĝ guesses are needed before Charlie can guess s, Bob only
needs for his message to arrive before the ĝ’s message sent
from Charlie.

In practice, AllNet requires that a key exchange message
created with the correct secret string be received within a small
number of tries, currently 100.

The keys kA and kB exchanged in this manner are only
used for communication between Alice and Bob. If Alice uses
her private key to sign each message sent to Bob, Bob can
have confidence that as long as Alice’s keys have not been
compromised, the message is indeed from Alice.

In this exchange, nowhere did Alice or Bob exchange
their names or other identifying information,5 other than the
shared secret string s. That means Bob must use other factors
(external to AllNet) to establish the identity of Alice. It is
in this sense that authentication in AllNet is pseudonymous.
Alice and Bob could exchange many different key pairs and
use them interchangeably. In other words, and as long as keys
are not compromised, there is at most one individual who has
access to a given private key, but each individual typically uses
many private keys.

This kind of authentication is powerful. For example, Alice
may use her private keys to sign and send a message to some
of her friends letting each of them know that from now on,
she will use a different key.

C. Using AllNet Public Keys for Identification

Because Alice is likely to use a different key pair to encrypt
messages to each of her friends, there is no way her friends
can identify Alice to each other. However, this is sometimes
desirable. In particular, having a token to identify each of a
person’s friends will be used in the next section to establish
the relationship distance between individuals who otherwise
would consider each other strangers.

The design of AllNet therefore includes one or more pub-
lic/private key pairs used only for authentication. Multiple
key pairs can be useful if a person wishes to have different
identities, for example in different groups, but the remainder
of this paper discusses the case of one key per person used
for identification. In the design of AllNet, the public key kid
is securely distributed to each new contact, and updates of kid
are sent to all contacts whenever kid changes.

III. ALLNET SOCIAL NETWORK CONNECTIVITY

AllNet is designed to be generally useful, but its usefulness
depends on wide participation, that is, on having a large
number of devices support AllNet and carry traffic for others.
Motivations for supporting AllNet were explored in a prior
paper [8], and range from selfish to altruistic.

This section explores the AllNet Social Network Connec-
tivity Algorithm (ASNCA), a mechanism to provide each
device and each user with additional information that might

5In practice, Alice and Bob might securely exchange profile information as
one of the first steps after completing the key exchange.

TABLE II
SYMBOLS USED IN SECTION III, SOCIAL NETWORK

Symbol Meaning
f , f1 friends’ keys
f2 friends’ friends’ keys
f i, i > 1 keys of the friends of the f i−1 group
|f i| number of keys in f i

ki number of bits saved for keys in fi
b number of bits in the Bloom filter
n number of keys (1 bits) in the Bloom filter
k number of bits in each potentially matching hash
mi size of Alice’s fi

encourage users to consider perfect strangers as not-so-distant
relations. In doing so, we hope that users might be even further
incentivated to support AllNet, not only to build an abstract
community, but also for the direct benefits that might come
from supporting communication among people to whom the
individual might have some measurable connection.

A. AllNet Social Network Connectivity Algorithm (ASNCA)

I store |f | friends’ public keys. Each key has k1 bits
(typically k1 ≤ 4,096). Each of my friends also gives me
the first k2 bits of all of their friends’ public keys (maybe
k2 = 128), k3 bits of the keys of their friends’ friends (maybe
k3 = 64).

If everyone has |f | = 100 f riends and contacts, in a random
world |f2| ≈ 10,000, |f3| ≈ 1M, |f4| ≈ 100M, and so on.

The world is not random, so a reasonable goal is to limit the
number of keys stored, for example to about 1 million keys.
At 64 bits for most of the keys, this requires 8MB of storage.
If everyone has a million keys, and if the total number of
keys is 10 billion,6 then the probability of any one of my keys
matching (at random) one of someone else’s million keys is
1million/10billion = 1/10000. The probablility that at least one
of my million keys matches one of the keys stored by someone
else is then close to 1. That means it is very likely that for
almost everyone on the planet, I will be able to determine the
distance of their relationship to me, even though my device
only stores a million keys.

ASNCA has everyone store the keys of their f1, the first
128 bits of the keys of their f2, and the first 64 bits of the
keys of their f3, up to one million keys or whatever number
of keys is appropriate for the technology at hand. If Σif

i is
small compared to the available space, devices can store f4,
f5, and so on, but the remainder of this discussion assumes
that each node stores only up to a million keys, and only in
f1 . . . f3.

Devices running AllNet try to provide at least a minimal
level of service to all, but should give preferential service
to people connected to the owner of the device. The AllNet
Social Network Connectivity Algorithm (ASNCA) is designed
to establish the relationship distance among individuals who

6By the time, if ever, that the population of the planet exceeds 10 billion,
it is likely that cheap mobile devices will have more bandwidth and much
more storage space than at present.

have never directly communicated before. Specifically, when I
wish to obtain better service from a device belonging to Alice,
Alice would like to be able to reliably establish whether I am
in her f2, f3, or more generally, the smallest i for which I
am in her f i.7 Mathematically, this is only true if for some
j < i, one of the people in my set f j is in Alice’s f i−j .

Alice needs to establish a value of i. However, I do not
wish to send in the clear either my kid (defined Section II-C)
or anyone else’s kid, since an eavesdropper (or even Alice,
should she turn out to be malicious) could attempt to use these
kid’s to impersonate me or my friends.

At the beginning of the exchange, Alice sends me a nonce
N . In response, I concatenate the nonce with each of the |f |
keys of of my friends and compute each hash h = (N, kid). I
use the |f | hashes to build a Bloom filter with b bits, where
b > |f |. I repeat the operation twice, once using k2 bits of
each friend’s key, then k3 bits (k1 > k2 > k3). I send Alice
the three Bloom filters.

Alice must perform the same hash h = (N, kid) for each
of the keys that she holds. This explains why I must hash my
friends’ keys using Alice’s nonce – Alice can send me a nonce
that is easy for her to use, for example, one of several nonces
for which she precomputed the hashes at some earlier time
when power was abundant.

For each of her friends’ keys, Alice must do the hash
computation three times, once using k1 bits of the key (all
the bits of the key), once using k2 bits (128 bits), and once
using k3 bits (64 bits). For each key of the friends of Alice’s
friends, the computation must be done twice, and for each
of the keys belonging to Alice’s friends’ friends’ friends, the
hash must only be computed once using k3 bits.

If any of the bits in at least one the Bloom filters corresponds
to any of Alice’s hashes, Alice has tentatively identified one
or more kid that might match one or more of my friends. She
then sends me the matching Bloom filter, the matching bits,
and the ki to use. To confirm that the keys indeed match, I
must hash the nonce concatenated with ki bits of each of the
keys corresponding to the matching bits, and return the hashes
to Alice.

If there is a match, Alice can confirm that I hold ki bits of
the key and thereby convince herself that I am in her f i+1.

At this point, Alice and I share a secret (ki bits of the
matching key), and can use this secret to exchange a new key.

However, if there is no match, none of my friends is in
Alice’s f1 . . . f3, so I am not in Alice’s f i for any i ≤ 4.

I may then repeat the operation by sending her two Bloom
filters for my f2, and again if necessary, send her one Bloom
Filter for my f3. This should allow us to determine whether
I am in Alice’s f i for all i ≤ 6.

In the above example of a random world where everyone
has 100 friends, |f6| ≈ 1006 = 1012, which is over 100 times
more than the current population of the Earth.

7Since Alice and I have never yet had any contact through AllNet, I cannot
be in Alice’s f set.

B. Minimizing the Size of the Exchange

Frequently, when I wish to obtain a service from Alice,
my mobile device will either be directly in range of Alice’s
mobile device, or both devices are likely to be connected to the
Internet. In both of these cases, restricting bandwidth usage is
not likely to be critical. However, it is interesting to consider
how the ASNCA exchange can be optimized by minimizing
the number of bits sent and received.

When I first connect to Alice to initiate the ASNCA
exchange, I must send her Bloom filters corresponding to my
friends’ keys. For simplicity, this analysis only considers the
set f3, which in most cases will be much larger than the other
sets, and has size n = |f3|. The size of the Bloom filter for f3

is b > n bits. Assuming that keys are randomly distributed,
each key that Alice holds will match a bit in my Bloom filter
with probability n/b. If Alice has mi keys at level i, the
expected number of matches between my Bloom filter and
Alice’s keys at her level i is n×mi/b.

I want to choose b to minimize the total number of bits
exchanged.

The number of bits I send Alice is the number of bits b in
the Bloom filter.

The information that Alice sends to me is the list of bits in
my Bloom filter that match her keys, at each level. In response,
I will send Alice a hash for each match. If the total number of
bits that Alice and I exchange for each match is k (the value
for k is derived in the next two paragraphs), then the expected
number of bits that Alice and I exchange for all the matches
is k × n×mi/b.

The information that Alice sends to me for each match is
the list of bits in the Bloom filter that match her keys at level
i. This can be encoded using log2n bits for each match.

The hash that I send to Alice for each match must have
at least as many bits as the smaller of the key that I have
stored, or that Alice has stored, since additional bits do not
give any additional information. If Alice stores ki bits of the
key and I store kj bits of the key, then I need to send Alice
min(ki, kj) bits for each hash. The value of k is then k =
log2n + min(ki, kj).

Including the original Bloom filter and the hashes, the
expected number of bits Alice and I exchange is:

ˆbits = b + k × n×mi/b (1)

mi is unknown until the exchange is complete (we don’t
know which of Alice’s levels, if any, will contain the key of
one of my friends), but if the number of stored keys is limited
to one million, mi ≤ 1,000,000.

I can differentiate equation 1 with respect to b and set the
differential to 0 to find the optimal b to minimize the total
number of bits sent.

d ˆbits

db
= 1− k × n×mi

b2
= 0

b2 = k × n×mi

b =
√
k × n×mi (2)

Using mi = 1,000,000 I choose the nearest bi that is a
power of 2.

For example, if I have about 1,000,000 keys in my f3 and
k3 = 64 bits, b =

√
64× 106 × 106 = 8 × 106 or 8 million

bits.8 The nearest power of two is 223 bits or 1,048,576 bytes.
The likelihood of any one of Alice’s 1,000,000 keys match-

ing a bit in my Bloom filter is about 1/8, since 1/8 of the bits
in the Bloom filter are set. The expected number of matches
is 125,000. For each of these matches I must send a 64-bit (8-
byte) hash, amounting to 1,000,000 bytes. The total amount
of data I send is then 2,048,576 bytes.

That this is optimal can be verified by looking at the next
lower power of two, using 222 bits in my Bloom filter, which
leads to an expected 250,000 matches and my sending Alice
2,524,288 bytes. The next higher power of two, 224, only
has an expected 62,500 matches whose hashes can be sent
with 524,288 bytes, but the Bloom filter has 2,097,152 bytes,
and the total data I send is 2,621,440 bytes. Both of these
are higher than the 2,048,576 bytes I must send when the
Bloom filter has 223 bits, so from this example we see that
b =
√
k × n×mi is indeed optimal.

IV. ANALYSIS

A. Comparison of ASNCA to a Simpler Scheme

ASNCA is a little complex, and it is tempting to say that I
should just send Alice 64 bits of the hash of the first 64 bits
for each of the keys in my f1 . . . f3. Alice can then compare
these hashes to hashes of her own keys.

Unfortunately, this simpler scheme is dramatically less effi-
cient. If I send one million 64-bit (8-byte) hashes, this means
sending 8MB, which is four times larger than the example
using ASNCA.

B. Security Analysis of ASNCA

When trying to establish a connection with ASNCA, I will
send to Alice some information about my social network.
However, I know nothing about Alice, and in fact, she might
be an attacker trying to obtain information from me rather
than somebody truthfully offering me a service. Also, since
the information is not encrypted, any eavesdropper or man-in-
the-middle attacker might be able to get the same information.
It is therefore appropriate to clearly identify what information
is and is not sent.

No keys are sent in ASNCA, only key hashes.
Therefore, and as long as the hash functions are crypto-

graphically secure, an attacker cannot identify the keys in
my social network unless the attacker has somehow already
obtained the keys.

The main concern is then that an attacker who already has
one of the keys in my f i will be able to tell that I have

8k is actually k3 + log2 1, 000, 000 = 84. This is close enough to 64
(about 15% after taking the square root) that for simplicity for this example
we use k = 64.

the same key. While this might pose some issues, it is also
the main point of ASNCA that someone from whom I am
legitimately seeking a service should be able to tell what our
degree of relationship is, and therefore that we have received
the same key from a person and device to which we are more
or less closely connected. So it is necessary for Alice to be
able to identify the keys I hold and that she also has.

There are some ways to lessen the amount of information
disseminated.

In variant 1, I only send to Alice information about my
immediate friends, which is a much smaller set than f3, so
an attacker is less likely to have accumulated any of those
keys. If I do this, I have a correspondingly smaller chance of
being found in Alice’s f1 . . . f4 than in Alice’s f1 . . . f6, but
perhaps the extra privacy justifies giving up any benefits from
being identified in Alice’s f5 or f6.

In variant 2, I only send Alice the hash of my own public
key, giving an attacker a chance to figure out who I might be,
but no information about my social network. Then, Alice will
only grant me higher priority if I am in her f1 . . . f3.

Variant 3 assumes that the information about keys in my f3

holds little interest to an attacker. After all, there are probably
few cases where an attacker would benefit from knowing who
my friends’ friends’ friends are. Since I usually do not know
myself who these people are, I may not mind the potential
loss of privacy.

Variant 3 has the benefit that one of these keys is very likely
to be found in Alice’s f1 . . . f3, and Alice is therefore likely to
grant me priority she would grant to anyone in her f4 . . . f6.

In variant 4, I send to Alice all my keys, in f1 . . . f3, but
all together and only hashing k3 bits, as if all these keys were
in my f3. Then, an attacker who finds a matching key does
not know whether it is a key for one of my friends, one of
their friends, or one of my friends’ friends’ friends.

Variant 5 combines variants 2 and 4. First I send Alice the
hash of my own key, which Alice can use to figure out if I am
in f1 . . . f3. If I am not, I can use variant 4 and send Alice
all my other keys, allowing Alice to figure out if I am in her
f4 . . . f6.

Because all of these approaches have advantages and dis-
advantages, the eventual decision of which to use can be left
for the user. Most users will probably neither know nor care
enough to make a decision, but those who do can choose
whatever suits them best.

C. Connectivity

Results in the theory of random graphs and analysis of
realistic social networks and on the web [1] indicate that
both theoretical and real networks with at least some random
connections have fairly low distance between any two nodes.

To confirm this, the author wrote a simple program to
assign to each node in a graph 100 connections. Of these 100
connections, the first ten are selected at random. The remaining
90 connections are established to friends of friends: nodes
selected at random from those connected to random nodes to
which this node already has a connection.

Out of 1,000,000 nodes, 100 were randomly selected and
distances to every other node in the network were computed
using Dijkstra’s shortest path algorithm. The average of the
distances from each of these 100 nodes to every one of the
million nodes in the network was 3.4. Over the 100 nodes
analyzed, the largest average distance was 3.8. The largest
distance from any node analyzed to any other node in the
network was 4, and no nodes were disconnected from the
network.

With 3,000,000 nodes, the results were similar: the average
of the distances was 3.74, the largest average distance was
3.94, and largest distance overall was 5, again with no nodes
disconnected from each node being analyzed.

These numbers not only confirm others’ theoretical and
experimental results, but indicate that keeping track of con-
nections up to the sixth degree, as is done by the ASNCA
algorithm, is an effective way of establishing connection
distance to a potentially very large number of people. This
is true even though in this program the number of random
links is small, and most of each person’s contacts are taken
from their existing contacts.

V. ALLNET PRIORITIZATION ALGORITHM

There is no requirement that a device use a specific AllNet
prioritization algorithm, since each device may set its own
priorities for message forwarding. However, it is useful to have
an algorithm to use by default whenever no other particular
priorities are defined.

The AllNet prioritization algorithm should be configurable
by individual users, but have reasonable defaults. The algo-
rithm is therefore parametrized by constants Ki that default
to values Di.

The prioritization algorithm assigns a value between 0 and 1
to each outgoing message, with 1 being highest priority.
Messages are queued and sent in order of priority. The priority
of outgoing messages is also used by AllNet to determine
the amount of resources to devote to message transmission.
In other words, more bandwidth and energy may be used to
send higher priority messages than lower priority messages.
However, even messages with a priority of zero may be
forwarded eventually, if there is no competing traffic and
resources are sufficient.

The inputs to the AllNet prioritization algorithm include
the closeness of the relationship of the immediate forwarder
of the data and of the final recipient of the data (distance d),
the size of the message (s), the number of messages received
from the same device in the recent past (weighted average rate
r̄), the expected number of further transmissions a message
will require (remaining hops h), and the number of recipients
that will need to attempt to decrypt a message (inversely
proportional to the number of bits of the recipient’s key in
the destination address, bk).

The algorithm computes a social desirability factor sd that
reflects the benefit, to the owner of the device, of forwarding
the message. The algorithm also computes a message cost
factor cf , proportional to the resources needed to forward the

TABLE III
SYMBOLS USED IN SECTION V, PRIORITIZATION

Symbol Meaning
Ki parameter of message prioritization
Di default value for Ki

d social distance to the owner of another device, in hops
s message size, in bytes
s0 size of the smallest encrypted message, 1,024 bytes
h number of hops remaining in the message header
bk number of bits of destination ID in the destination address
sd social benefit to the owner of forwarding a message
cf overall resources needed to forward a message
costdev resources this device will use to forward a message
costnet resources the network may use to forward a message

message both on this device, and also throughout the network.
These two factors also have values between between 0 and 1,
and the overall priority of the message is the product of the
two: priority = sd× cf .

The social desirability factor sd should be highest if either
the original sender or ultimate receiver of the message is the
owner of the device, still substantial for friends of the owner,
and monotonically lower for people at greater social distance.
For simplicity, only the lower distance of the sender or the
receiver is used as the value d. To convert distance to a cost
factor, AllNet raises a base K1 to the exponent d, so that the
owner of the device always has sd = 1, messages from the
owner’s friends have sd = K1, their friends’ messages have
sd = K2

1 , and so on. With the default value K1 = D1 = 0.7,
the owner’s friends have sd = 0.7, their friends sd = 0.49,
friends farther away sd = 0.34, sd = 0.24, sd = 0.17, and
sd = 0.12, and finally total strangers have sd = 0.08.

The cost factor cf includes the cost to this device to forward
the message, costdev , and the projected cost for other devices
in the network to forward the message, costnet. The two are
mediated by another constant K2, such that the overall cost
factor is cf = costdev×K2 + costnet× (1−K2). The default
value for K2 is K2 = D2 = 0.5, giving equal weight to both
the individual cost, which can be measured fairly accurately,
and the network cost, which, though potentially much larger,
is only an estimate, and subject to other devices’ determination
of message priority.

Although forwarding a message is a complex operation, the
AllNet prioritization algorithm assumes that the cost for this
device to forward a message is simply inversely proportional to
the size of the message. Since most AllNet traffic is encrypted,
a cost factor of 1 is given to messages carrying a single
encrypted payload of size s0 = 1, 024 and to any smaller
messages.9 Larger messages of size s have a cost factor
costdev = s0/s.

Estimating the cost to the network of forwarding a message
takes into account information from the AllNet forwarding
header, specifically the number of hops remaining and the
number of bits of destination address specified by the sender.
The latter is a mechanism to allow a sender and a receiver to

9A message encrypted and signed with 4,096-bit RSA keys requires 1, 024
bytes.

communicate without intermediate hosts being able to perform
traffic analysis. The sender specifies a variable number of bits,
and any recipient whose keys match the specified bits is invited
to decode the message. If bk bits are specified, approximately
2−bk of all keys will match. So, the more bits are specified,
the fewer recipients will need to decrypt a message.

Conversely, the more hops h a header specifies, the more
resources the network will need to forward the message, and
the more recipients the message is likely to reach. The number
of recipients may grow exponentially with the number of hops,
so the cost factor should grow in proportion.

Using these considerations, and acknowledging the imper-
fection of this formula in predicting the true cost for the
network to forward the packet, we use costnet = bk

√
K3/K

h
4 .

Normally, K3 = D3 = 0.5, and K4 = D4 = 2, giving
costnet = bk

√
0.5× 2−h.

The overall formula for the priority of a message whose
source or destination has a social distance d, with size s,
showing bk bits of destination address and requesting to be
forwarded h hops, is:

priority = Kd
1 × (K2 × s0/s + (1−K2)× bk

√
K3/K

h
4)

Using default values, the formula is

priority = 0.7d × (0.5× 1, 024bytes/s + 0.5× bk
√

0.5/2h)

While the computation of bk
√
K3 might be somewhat CPU-

intensive, the values can be pre-computed at the start of
program execution for the first several values of bk. Should
it be desired to avoid floating-point computations, all values
can be scaled by a suitably large number N (e.g. 109 if
32-bit integers are to be used) and fixed-point computations
performed instead of floating-point computation, yielding a
priority between 0 and N .

VI. APPLICATIONS OF THE ALLNET SOCIAL NETWORK

AllNet was originally conceived as a network that could
be used to convey information in times of emergency, when
the infrastructure might be damaged but mobile devices might
still be functional. In order to train users to be prepared to
use AllNet should an emergency occur, the network should be
useful on a daily basis.

From the existence of SMS, Twitter, and similar services,
it seems likely that even exchanging short text messages will
have broad usefulness. Unlike all these systems, a peer-to-
peer system without a central point of failure or control might
be useful in many cases, so the first application for AllNet
is a chat system. Using 4,096-bit RSA keys, messages can
be almost 500 bytes long, which is longer than either SMS
or Twitter. Messages are persistent, and any two keys and a
sequence number uniquely identify a message.

The chat system uses the AllNet network, but keeps track of
the social network that can inform AllNet and help it prioritize
messages.

The next obvious application of AllNet is web access. While
this has yet to be be designed in detail, the basic idea is

to provide at least bare-bones access to information on the
web using the AllNet protocol. More advanced access would
use the authentication capabilities of AllNet in place of the
existing common use of user names and accounts. A new
user registering on a server might send a new public key
to that server over a connection authenticated using current
technology.

The benefits of using AllNet for web access are the AllNet
design and software for key management, and accessing the
web even in situations where one would otherwise be discon-
nected. The challenges in this case consist mostly in adapting
the message-oriented style of AllNet communication to the
connection-oriented nature of web traffic, and in being able to
establish secure connections with web sites without having to
trust any intermediate host.

A third application of AllNet that might have substantial
benefits is in distributing and finding out local informa-
tion. Currently, this is done by searching centralized, global
databases where location is one of the attributes to search on.
Major search engines recognize the value of this information,
and businesses may pay search engines to appear in the results
of such searches. However, with AllNet it is straightforward
for local businesses to do a local broadcast of information
about themselves, or for searchers to locally broadcast requests
for information. This exchange will normally be in the clear,
though encryption may be appropriate when the information
is only meant for a set of people that is known to the sender.

Since AllNet automatically identifies messages from per-
sons of interest, any messages from others can be automati-
cally ignored when the user is not searching among broadcast
information.

The benefits of having local control over the broadcast of
local information are many, and include the ability to update
the information quickly according to local circumstances.

VII. RELATED WORK

The design of AllNet builds on a number of independent
areas of research in computer networks. Chief among these are
ad-hoc networks and peer-to-peer (P2P) networks, especially
P2P social networks and secure P2P networks. Emergency
Communication Networks have been popular ever since the
early days of Amateur radio, and several are in current use
or have been recently proposed. This section provides a
necessarily brief introduction to these fields of research.

While there has been much research on Quality of Service
and more generally traffic prioritization, this section does not
attempt to summarize the state of the art, and instead highlights
the advantages of the approach taken in the design of AllNet.

A. Peer-to-Peer Social Networks

In recent years several proposals have been made for Peer-
to-Peer (P2P) social networks. These include PeerSoN [9],
Safebook [10], and PeerBook [11], though the last project
no longer seems to be maintained. The very first secure P2P
network was probably Phil Zimmerman’s PGP [12], which

provides security encryption for email messages. PGP intro-
duced the idea of a web of trust based on social relationships.
The major disadvantage of PGP is the practical difficulty of
securely exchanging public keys, a difficulty that AllNet has
addressed.

PeerSoN and Safebook appear to be progressing as good
P2P social networks providing privacy and addressing many
of the issues needed to provide a secure P2P social network.
However, unlike AllNet, the focus of these project is on
providing a distributed social network rather than a networking
technology that will provide useful services whenever possible.

Freenet [13] is another network technology focused on
secure data exchange among peers. Freenet is really designed
for systems that are normally connected to the Internet rather
than for systems whose connectivity changes frequently and
is often missing.

Work in reputation-based systems (for example, [14]), to
reward socially constructive behavior and discourage socially
damaging behavior, is complementary to ASNCA.

B. Emergency Communication Networks

The cellular infrastructure as a whole is highly reliable, and
the Internet only slightly less so. Both are often extremely
useful in emergencies. On the other hand, disasters do affect
existing communication infrastructure, and much research and
development has gone into quickly providing communication
services where necessary.

The Trilogy Emergency Response Application (TERA [15])
network developed for the International Federation of Red
Cross and Red Crescent and deployed after the earthquake
in Haiti. TERA uses cellular infrastructure to communicate
with mobile devices, and emphasizes SMS (text message)
communications as being the most efficient and effective way
of exchanging and disseminating information.

Much research and development has gone into different
ad-hoc networks for emergency communications, including
the Byzantium Linux distribution [16], ECCA [17], and
LifeNet [18]. In general, these systems share some of the
goals of AllNet, but are much more focused on emergency
communications. In contrast, one of the principles in the
design of AllNet is that people should use in their daily
lives systems such as AllNet that will also provide service
during emergencies. If the system is in daily use, it is already
deployed prior to the disaster or emergency, and people are
already trained to use the system.

C. AllNet Secure Ad-Hoc Networking

There has been much research and a plethora of papers on
securing ad-hoc wireless networks, too much to cover here.
Instead, this section briefly reviews the technology used in
securing communications in AllNet.

AllNet currently uses RSA public key encryption [19] [20]
with 4,096-bit (512-byte) keys. However, AllNet does not
require a standard cryptosystem. Any recipient of a message
can attempt to decrypt and verify the message, and if either
the decryption or the verification fail, discard the message.

Therefore, as long as a sender and one or more receivers agree
on which cryptosystem to use, any encryption can be used
with AllNet. This includes all existing and future public-key
and symmetric-key algorithms where the key must be shared
by the sender and the receiver.

Although the overall design of AllNet is independent of any
specific hash function, standard AllNet operations described
in this paper, including key exchange and ASNCA, do require
the choice of a hash function. For AllNet, we have chosen
SHA512 [21] as being the most future-proof hash function
currently available.

D. Traffic Prioritization in Networks

AllNet is not designed to provide specific performance or
QoS to a communication stream. Instead, the design goal for
AllNet is to determine, based on message characteristics, what
resources to devote to transmitting a message, and in what
priority order it ought to be sent. AllNet uses social network
connectivity to attempt to infer how many resources the owner
of the device would wish to devote to the transmission of
the message, and properties of the message to determine how
many actual resources to use.

VIII. CONCLUSION

The idea of AllNet, free ubiquitous connectivity without the
need for new hardware, has been an inspiration to a number
of individuals. An implementation of AllNet is consequently
in process. Work is continuing and up-to-date information is
available on the project web site, http://alnt.org, but
the current state of the implementation is described here.

Although plans call for AllNet to be implemented on all
major mobile platforms, until now, AllNet has only been
implemented for Linux. The current implementation includes
two servers, allnetd and wtxrxd, and a chat program.
The chat program provides a simple textual interface that
supports message and key exchange, selection of who to chat
with, and secure identification of incoming messages. The
allnetd server implements the bulk of the AllNet protocol,
and is designed to run with the least possible privilege on
the system. On Linux, that means running as the null user
in a chroot jail. ASNCA and the priority algorithm are not
yet implemented, but the basics of peer-to-peer networking,
including limited broadcasting of messages, keeping track of
peers, bootstrapping, and persistent storage of messages are in
place and have gone through at least preliminary testing and
deployment.

In contrast, the wtxrxd server (the name stands for ”Wire-
less Transmit Receive Daemon) is designed to run with enough
privilege that it may send and receive broadcast messages on
the networks to which the device can connect, to bring up
wireless interfaces as needed for AllNet, and to bring them
back down whenever possible to conserve energy. Because
this server runs in privileged mode, it is as simple as possible.

The AllNet key exchange algorithm and data encryption,
signing, decryption and verification are implemented in a user-
space library used by the AllNet chat program.

This very early implementation has proven the basic princi-
ples of AllNet, that ad-hoc networking can be a complement
to more established and better-performing infrastructure based
networking, and can provide basic communication facilities for
interpersonal exchanges even when nothing else can.

REFERENCES

[1] F. Chung and L. Lu, “The average distance in a random graph with
given expected degrees,” Internet Mathematics, vol. 1, 2003.

[2] Sun Microsystems, Inc., “NFS: Network file system protocol
specification,” RFC 1094, March 1989. [Online]. Available:
http://tools.ietf.org/rfc/rfc1094.txt

[3] E. Biagioni, “A ubiquitous, infrastructure-free network for
interpersonal communication,” in The Fourth International Conference
on Ubiquitous and Future Networks, Phuket, Thailand, 2012.

[4] K. W. Wall, “Misunderstanding trust,” June 20 2012. [Online].
Available: http:
//www.infosecisland.com/blogview/21676-Misunderstanding-Trust.html

[5] B. Christianson and W. Harbison, “Why isn’t trust transitive?” in
Security Protocols, ser. Lecture Notes in Computer Science,
M. Lomas, Ed. Springer Berlin / Heidelberg, 1997, vol. 1189, pp.
171–176, 10.1007/3-540-62494-5 16. [Online]. Available:
http://dx.doi.org/10.1007/3-540-62494-5\ 16

[6] T. Wu, “The SRP authentication and key exchange system,” RFC 2945,
September 2000. [Online]. Available: http://tools.ietf.org/rfc/rfc2945.txt

[7] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” in Advances in Cryptology
- EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May
14-18, 2000, Proceeding, ser. Lecture Notes in Computer Science, vol.
1807. Springer, 2000, pp. 139–155.

[8] C. Desiato and E. Biagioni, “Sharing networking resources to create a
pervasive infrastructure,” in Ninth International Conference on
Technology, Knowledge, and Society, Vancouver, Canada, 13-14
January 2013.

[9] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta, “PeerSoN: P2P
social networking - early experiences and insights,” in Proceedings of
the Second ACM Workshop on Social Network Systems Social Network
Systems 2009, co-located with Eurosys 2009, Nürnberg, Germany,
March 31, 2009, pp. 46–52.

[10] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: a privacy
preserving online social network leveraging on real-life trust,” IEEE
Communications Magazine, vol. 47, no. 12, December 2009.

[11] B. Birt, “Peerbook,” June 29 2010. [Online]. Available:
http://blogs.cs.st-andrews.ac.uk/peerbook/

[12] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,
“OpenPGP message format,” RFC 4880, November 2007. [Online].
Available: http://tools.ietf.org/rfc/rfc4880.txt

[13] I. Clarke, “A distributed decentralized information storage and retrieval
system,” 1999. [Online]. Available:
http://freenetproject.org/papers/ddisrs.pdf

[14] S. Buchegger, “Coping with misbehavior in mobile ad-hoc networks,”
Ph.D. dissertation, Lausanne, Switzerland, 2004.

[15] “Trilogy emergency response application (TERA).” [Online].
Available: http://www.cdacnetwork.org/public/resource/
trilogy-emergency-response-application-tera

[16] “Byzantium live distro.” [Online]. Available:
http://wiki.hacdc.org/index.php/Byzantium\ Live\ Distro\#Goals

[17] T. Fujiwara and T. Watanabe, “An ad hoc networking scheme in
hybrid networks for emergency communications,” Ad hoc Networks,
vol. 3, pp. 607–620, 2005.

[18] H. Mehendale, A. Paranjpe, and S. Vempala, “Lifenet: A flexible ad
hoc networking solution for transient environments,” Demo at
SIGComm, 2011. [Online]. Available:
http://www.cc.gatech.edu/∼vempala/papers/lifenet.pdf

[19] R. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120–126, February 1978.

[20] RSA Laboratories, “PCKS #1 v2.1: Rsa cryptography standard,” 2002.
[21] Information Technology Laboratory, “Secure hash standard (SHS),”

FIPS PUB 180-3, Gaithersburg, MD 20899-8900 USA, June 2007.

